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Abstract: The assumption that crystal contacts reflect natural macromolecular interactions makes a basis for many
studies in structural biology. However, the crystal state may correspond to a global minimum of free energy where
biologically relevant interactions are sacrificed in favor to unspecific contacts. A large-scale docking experiment was
performed to assess the extent of misrepresentation of natural (in-solvent) protein dimers by crystal packing. As found,
the failure rate of docking may be quantitatively interpreted if both calculation errors and misrepresentation effects are
taken into account. The failure rate analysis is based on the assumption that crystal structures reflect thermodynamic
equilibrium between different dimeric configurations. The analysis gives an estimate of misrepresentation probability,
which suggests that weakly bound complexes with KD ≥ 100 µM (some 20% of all dimers in the PDB) have higher than
50% chances to be misrepresented by crystals. The developed theoretical framework is applicable in other studies, where
experimental results may be viewed as snapshots of systems in thermodynamic equilibrium.
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Introduction

Many important processes in biology are associated with the ability
of proteins to interact with each other and form complexes.1 Protein–
protein interactions are thought to be specific,2 which means that a
given protein is likely to interact only with particular protein types
and in particular regions of protein surface. This feature is important
for research and applications. It is commonly assumed that data on
potentially interacting proteins and structural details of protein bind-
ing may bring about a better understanding of biochemical processes
and give a clue for drug discovery and design.3

Most of our today’s knowledge on structural aspects of protein–
protein interactions (PPIs) comes from protein crystallography.4

Because the crystalline state represents an energetically optimal
arrangement of molecular units, one could expect that favorable pro-
tein interactions are preserved by crystal packing. In simple words,
this means that crystals are likely to exhibit natural protein contacts,
or interfaces, which are formed in protein’s native, “working” envi-
ronment. This assumption is exploited in most, if not all, studies
where structural aspects of PPIs are inferred from crystals.

Two problems arise when inferring on PPIs from crystallo-
graphic data. First, distinguishing between significant crystal inter-
faces (i.e., those supposedly representing the natural interactions)
and artifacts of crystal packing is not always a simple task.5 To
a certain degree, the problem may be helped by crystallographic
considerations. For example, a heterochain asymmetric unit and

noncrystallographic symmetry rotations may indicate a complex,
while a pure translation almost always (except for naturally infinite
polymers, such as muscle proteins) identifies an artifactual, unspe-
cific interface. Also, it is widely assumed that if a given interface is
found in a few different crystal forms then it is likely to be the “real”
one.6 Such recipies lack quantitative description and obviously are
not applicable in many cases, e.g., when only a single crystal form
is available.

A more rigorous approach to the identification of significant
interfaces in crystal packing is based on the analysis of inter-
face properties.5, 7–21 Ideally, such type of analysis should be
performed in energy terms. However, accurate energy estimates
for protein–protein binding represent a challenging theoretical
problem; therefore, most methods use various descriptors, such
as interface planarity, shape, surface complementarity, propensity,
residue composition, area, etc. in an attempt to find a combination
of properties that would reliably identify significant interfaces. This
line was researched in many studies, including those cited earlier,
with different degrees of success.

In ref. 22, we addressed a closely related problem, the iden-
tification of macromolecular assemblies in crystal packing, using
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empirical estimates for the dissociation free energy of macromolec-
ular complexes. As was found, despite a relatively simple nature
of the estimates, our procedure, PISA (protein interfaces, surfaces
and assemblies) reproduces about 90% of complex structures ver-
ified by independent (noncrystallographic) experimental studies.
This success rate is higher than initially expected, which can be
hardly attributed to the quality of free energy estimates used. More
probably, the success is due to the ready geometry of PPIs provided
by crystal packing. PISA does not dock macromolecular units, but
rather assumes that crystal-given dockings (the interfaces) are the
optimal ones. Then, even approximate free energy estimates appear
to be sufficient for the successful identification of complexes.

The question of whether crystal interfaces correspond to the nat-
ural interactions (or whether they, indeed, are the optimal dockings)
is the second problem in crystallography-based analysis of PPIs.
The relationship between natural complexes and their representa-
tion in crystals is almost always assumed to be a straightforward
one. However, crystals exemplify thermodynamic systems in global
minimum of free energy, taking into account both natural and unspe-
cific interactions. Therefore, if energy of a natural interaction does
not compete with the combined effect of unspecific crystal contacts,
then such interaction may be sacrificed in the course of crystalliza-
tion. If this happens, an apparently significant crystal interface does
not represent the natural PPI. In such cases, we will say that the PPI
(or a complex) is misrepresented by crystal packing.

One can view the change of complex configuration in crys-
tal environment as interaction-induced shift in energy landscape.
These effects have been thoroughly discussed in literature in appli-
cation to conformational changes in proteins upon binding.23–26

Recently, these theoretical concepts have received experimental ver-
ification.27, 28 As pointed out in refs. 23–26, most proteins exist in
dynamic equilibrium between several conformations, which may be
classified into four energy landscape patterns. Analysis of these pat-
terns suggests that a conformation, different from the lowest-energy
one, may be selected for structure-specific (lock-and-key) binding,
subject to energy and kinetic barriers between the conformations.
These results are directly tranferable to protein complexes in crystal
packing, where “conformational change” refers to a wide spectra of
complex configurations.

Direct assessment of misrepresentation effects in crystals is dif-
ficult because of a rather limited number of protein complexes with
3D structure experimentally verified by both crystallographic and
noncrystallographic (NMR,29 EM,30 small-angle scattering31, 32)
studies. Thus, in ref. 22, we were able to use only 430 PDB (Protein
Databank33) entries, reviewed in other studies,20, 34 where structure
of macromolecular complexes was thoroughly investigated using
complementary experimental techniques. If highly accurate free
energy calculations were available, then significant crystal contacts
could be verified by computational docking.35–56 However, the accu-
racy of existing docking procedures is not well understood. As a rule,
various parameters of docking programs are calibrated on a limited
set of selected targets,57, 58 normally chosen as significant crystal
interfaces. This type of procedure does not guarantee universality
of calibrated parameters, and the overall success of macromolecular
docking is known to be rather limited.59

Docking failures are most often attributed to the inevitable errors
in free energy calculations or imperfectness of other scores used.
However, docking procedures are tested on targets of primarily

crystallographic origin.57, 58 Therefore, there is a hypothetical pos-
sibility of docking failure (that is, nonarrival at a significant crystal
interface) due to misrepresentation of PPIs in crystals. In this study,
we attempt to identify contributions from both calculation errors
and crystal misrepresentation effects to the failure rate of dock-
ing by analyzing docking results on a large set of structures. As
will be shown, these contributions may be identified because of the
differences in their dependences on free energy of complex disso-
ciation. Only dimeric complexes are considered, because of their
far greater population in the PDB, as compared with complexes of
higher mutiplicity, and also because of a simpler theoretical analysis
they require. An estimate of misrepresentation effects in crystals will
be given, which suggests that a considerable part of weak dimers in
the PDB may not correspond to natural complexes, and that the prob-
ability of seeing transient interactions in crystalline state is rather
slim.

Method

In this study, we aim to conclude on the reproducibility of pro-
tein dimers, identified in crystal packing (“crystal dimers”), with
a computational docking procedure. An ideal, error-free docking
is supposed to arrive at a natural dimer configuration. If crystal
dimer corresponds to the natural one, then no conformational mod-
eling is required and it should be reproducible by the simplest
rigid-bidy bound docking procedure.35–38 However, in reality not all
dimers may be reproduced due to computational errors and possible
difference between crystal and natural complexes.

As mentioned in the Introduction, the number of protein com-
plexes with independent (noncrystallographic) verification of their
3D structures is limited. Therefore, we will use protein dimers
identified as significant crystal contacts by PISA software.22 PISA
employs certain physical-chemical models of PPIs for the identifica-
tion of chemically stable complexes in crystal packing. To maintain
consistency between the models used for the identification of crystal
dimers and docking and minimize computational artifacts due to the
difference in underlying principles, we develop a docking method
based on PPI models that are close, as much as possible, to those
used in PISA. Below we sketch the method.

An optimal docking position (orientation and translation) of pro-
teins A and B corresponds to the maximum of Gibbs free energy �G0

dissipated by the solvent upon formation of dimeric complex AB:

�G0 = −�Gint − T�S (1)

where �Gint is binding energy and �S is the entropy cost of
dimerization. In PISA, �S is estimated as22

�S = C + 3

2
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where m(X), Jk(X), and γ (X) stand for the mass, kth princi-
pal moment of inertia, and symmetry number of molecule X,
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respectively, �σ is buried surface area (BSA), and C and F are
constants.

It may be shown that orientation dependence of �S is rather
weak. Indeed, first two terms in eq. (2) do not depend on the orien-
tation, and so does the third term in case of globular proteins. In the
worst hypothetical case of elongated molecules, approximated with
cylinders, the third term shows variations of about 0.5 kcal/mol with
the geometry of a dimer (from side-to-side to end-to-end orientations
of the cylinders) at room temperatures. The fourth term of eq. (2)
equals to zero in the case of asymmetric dimers and reaches some
0.41 kcal/mol in the case of symmetric complexes. The last term,
corresponding to the entropy of surface side-chains, was found to
be quite small,22 contributing about 1 kcal/mol per 104 Å2 of BSA.
Thus, the total error may amount to 1–2 kcal/mol, which is below
the expected precision of PISA models (±5 kcal/mol or worse22).
Therefore, we neglect orientation dependence of �S in our docking
procedure.

Binding energy �Gint in PISA is estimated as22:

�Gint = �Gsolv + NhbEhb + NsbEsb + NdbEdb (3)

where �Gsolv stands for the solvation energy gain upon complex
formation, Nhb, Nsb, Nds are numbers of formed hydrogen bonds,
salt bridges, and disulfide bonds, respectively, and Ehb, Esb, Eds

stand for their free energy effects. The following approximation for
�Gsolv is used in PISA22:

�Gsolv =
∑

k

ωk
(
�σ A

k + �σ B
k

)
(4)

where ωk is atomic solvation parameter (ASP) of kth atom type and
�σ X

k is the sum BSA of atoms of kth type belonging to molecule X.
All terms of eq. (3) essentially depend on docking position.

Assuming position-independent �S, one can formulate the docking
problem as finding a relative position of molecules A and B that mini-
mizes �Gint at zero (subject to tolerance) overlap of the molecules. It
may be shown that all terms of eq. (3) may be regarded as properties
of molecular surface. Then, minimization of �Gint may be conve-
niently solved by a shape correlation technique, described in ref. 35.
Our docking procedure uses FFT-based approach,35 where surface
area calculations are replaced with calculation of �Gint similar to
what was suggested in refs. 42 and 47.

We have chosen to sample the orientation space with resolu-
tion of 2◦, which was empirically found to be a good compromise
between computation time and accuracy, shifted generously to the
latter. All correlations are calculated using FFTW (Fastest Fourier
Transfrom in the West) software.60 FFT is most efficient on dimen-
sions N = 2n, out of which the calculations were found practical
with discretizing protein molecules on 3D grids with N = 256.35

This keeps the grid resolution below 1 Å for most protein structures.
Because of the necessity to calculate several FFT correlations,42, 47

our method is not expected to be faster than some other docking
algorithms. As found, a parallel implementation of the method
on a 60-node cluster of 2.8 GHz AMD CPUs yields a docking
solution in 20–30 min. Here, we sacrifice performance for a descrip-
tion of PPIs that is consistent with PISA software,22 used for the

selection of dimeric structures in the PDB, as described in the next
section.

The Dataset

The dataset was initially composed of stable protein dimers (�G0 ≥
0), calculated by PISA software22 in the absence of any ligands
(unless covalently linked). Then clusters of similar dimers were
identified, and only one central structure from the cluster was left
in the set. The structure similarity criteria used for clustering were
identical to those employed in PISA, where structures A and B are
considered similar if their structural alignment yields the following
values of quality score Q and sequence identity SI22:

Q = N2
align

(1 + (RMSD/3)2)NANB)
≥ 0.65 SI = Nident

Nalign
≥ 0.9 (5)

In these expressions, NX stands for the number of residues in struc-
ture X, RMSD is r.m.s.d. between aligned Cα’s at best structure
superposition, Nalign is the number of aligned residue pairs, of
which Nident pairs are formed by identical residues. SSM (secondary
structure matching) software61 was used to perform the alignments.

Conditions (5) correspond to a rather high structure similarity.
However, we use these criteria because even moderate structure
changes may significantly influence the interface properties and
have a drastic effect on complexation. The final structure set used
in our study includes 4065 dimeric complexes, covering the range
of �G0 = 0 . . . 211 kcal/mol. 3431 (84%) structures in the dataset
are homodimers.

Many PDB entries represent only parts of natural proteins. Quite
typically, only selected protein domains are crystallized, either those
of interest or those that are crystallizable. Therefore, most probably,
not all structures in the selected dataset are “truly” dimeric. This,
however, is not significant for the purpose of our study. Indeed,
PISA treats all PDB structures as if they were complete proteins,
and derives oligomeric states that are likely to correspond to given
macromolecules, whether they represent the natural polypeptides or
not. Therefore, it is possible to treat them as true dimeric structures
in our docking experiment as well, disregarding the fact that they
may be the artifacts of sample preparation.

Results and Discussion

The developed docking procedure has been applied to all dimeric
complexes in the selected dataset. Before the docking, orientation
of one subunit in each complex was randomized to eliminate the
possibility of docking by a trivial translation. For each protein
pair, we analyze only one docking solution with maximum free
energy of dissociation �G0 (1), in difference of many other studies,
where success is traditionally measured by the occurence of cor-
rect solution among 10 or so top-ranked alternatives. Then, docking
solutions were compared with the original complexes by calculat-
ing the r.m.s.d. of the corresponding Cα atoms at best supersposition
of the original and docked dimers. Docking solutions with r.m.s.d.
≤ 10 Å were counted as acceptable, others were classed as fail-
ures. The 10 Å threshold has been chosen after visual inspection
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Figure 1. Distribution of docking solutions over r.m.s.d. from the
corresponding crystal dimers, built on 0.25 Å bins.

of a considerable number of dockings. Figure 1 shows the r.m.s.d.
distribution of all dockings. As seen from the figure, the chosen
threshold corresponds roughly to the minimum between a pro-
nounced low-r.m.s.d. peak (“successful” dockings) and a long hill
in the high-r.m.s.d. end (“failed” dockings). The figure suggests that
the exact value of the threshold r.m.s.d. should not make a significant
effect on final conclusions, as less than 5% of all dockings fall into
r.m.s.d. region of 5–10 Å, normally suggested for the discriminating
threshold.

In figure 1, 38% of dockings belong to the high-r.m.s.d. hill,
meaning precisely that for 38% of structures, the maximum free
energy dimer was found to differ substantially from the most signif-
icant crystal contact. This figure looks confusingly high, taking into

account that it was obtained for the simplest rigid-body bound dock-
ing, with no conformational effects involved. A seemingly plausible
explanation of docking failures is that optimal dockings are missed
because of limited accuracy of free energy calculations and finite
resolutions of 3D grids and angular search procedure. However, it
is also possible that the overall low success rate reflects mainly the
composition of the dataset, if, for example, it overrepresents classes
of crystal dimers not reproducible by docking.

To illustrate that, let us examine how the failure rate of docking
Pf depends on a few different parameters. Figure 2 suggests that
docking success increases consistently with decreasing hydropho-
bic P-value (Fig. 2A), decreasing buried surface area ABSA (Fig. 2B),
and increasing free energy of dissociation �G0 (Fig. 2C). Consider
first data in Figure 2A. The hydrophobic P-value Pv of an interface
is defined as probability to find a same-area patch on protein sur-
face that would be more hydrophobic than the interface. Therefore,
low Pv indicate specific hydrophobic spots, which are likely to be
preferential in protein–protein interactions and for this conserved by
crystal packing. In the figure, the failure rate reaches maximum at
Pv ≈ 0.5. This corresponds to the situation when the chances to find
patches on protein surface that are more or less hydrophobic than the
dimer interface, are equal, and, therefore, hydrophobic properties of
the interface are not “surprising.” At Pv ≥ 0.5 protein binding is
not specific, which means that there is no strong preference to any
particular dimer configuration among few permitted by structural
features. As seen from Figure 2A, the failure rate of docking Pf is
maximal in these conditions.

Generally speaking, structural promiscuity of protein contacts
does not imply a weak binding. Hypothetically, two proteins may
form a few different complexes with close values of �G0.23–28 Such
complexes would then exist in a dynamic equilibrium.23–26 In this
case, the docking objectives are ill-defined because of ambiguity of
target selection. Because of the finite accuracy of practical calcula-
tions, docking program may pick any of the similar-energy dimers.

Figure 2. Relative fraction of dockings (solide lines), failed to arrive at the corresponding crystal contact,
as a function of (A) hydrophobic P-value Pv (B) buried surface area ABSA and (C) free energy of dissociation
�G0. All values presented are for the corresponding crystal dimers, Pf is calculated by averaging within
equipopulated bins and every step of the solid curve indicates the corresponding bin. Dotted lines indicate
the cumulative number of docked pairs, divided by the total number of dockings (4065). See details in the
text.
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Table 1. Summary of Failed Dockings from the Highest-Area
Bin in Figure 2B.

Crystal dimer Docked dimer

PDB entry ABSA �G0 Pv ABSA �G0 Pv

1ea9 6580 19.7 0.446 3360 33.1 0.068
1xr4 6930 26.5 0.092 5080 36.5 0.072
2j6h 6960 16.1 0.473 4260 26.4 0.259
2cst 7150 35.8 0.338 6130 49.2 0.111
1sgk 8350 32.7 0.206 4390 32.8 0.325

Middle part shows the buried surface area ABSA, in Å2, dissociation free
energy �G0, in kcal/mol, and hydrophobic P-value Pv for crystal dimers
identified by PISA software.22 Right part shows the same data calculated for
docked complexes. The crystal and docked dimers are shown in Figure 3.

One can imagine, however, that the same may happen in the course
of crystallization if, subject to the crystallization regime or precip-
itation agents used, the procedure arrives at structurally different
but energetically close packings. As seen from Figure 2A, about
50% of dimers in the dataset have Pv ≥ 0.1. This indicates a mod-
erate interaction specificity and, therefore, reproducibility of these
dimers in docking may be impaired in the presence of alternative
configurations.

Buried surface area ABSA (Fig. 2B) is a traditional measure of
interface significance. As may be found from the figure, docking
fails to reproduce crystal contacts with ABSA larger than 6500 Å2

in only ≈2% of instances. Further analysis shows that no failures
are found at ABSA > 8400 Å2. Docking failures with ABSA ≥ 6500
Å2 are summarized in Table 1, and Figure 3 shows the correspond-
ing dimeric complexes. As seen from Table 1, in all cases, docking
arrives at noncrystal dimers because they show a higher �G0 than
the corresponding crystal interfaces. The �G0 difference between
crystal and docked dimers is rather high but within the 3σ confi-
dence limits for the anticipated accuracy of PISA models (σ ≈ 5
kcal/mol). At the same time, BSA of docked dimers is less than
that of the corresponding crystal interfaces. This results in lower P-
values, indicating an apparently higher specificity of interactions in
docked complexes. The only exception here is PDB entry 1SGK,62

where a higher value of �G0 is due to the formation of a higher
number of hydrogen bonds, rather than a higher hydrophobic speci-
ficity. Visual inspection of docked dimers in Figure 3 suggests that
docked 1EA963 and 1SGK62 are asymmetric and therefore unlikely
to be the real dimers. Docking of 1XR464 is an artifact due to the
treatment of flexible “arms” as rigid structures. However, docked
2J6H65 and 2CST66 represent well-packed symmetric complexes,
which could be the locally stable alternative dimers.

At BSA below 1700 Å2, the failure rate of docking reaches
70% (cf. Fig. 2B). Remarkably, Pf shows a consistent growth with
decreasing ABSA. About 50% of crystal dimers in the selected dataset
have ABSA ≤ 3000 Å2, of those less than 50% are reproduced by
docking. To interpret these results, note that the underlying reason
for taking ABSA as a measure of interface significance is that it cor-
relates with the binding properties: smaller BSA implies weaker
binding. Then, the smaller ABSA, the smaller should be the absolute
difference in �G0 between alternative docking solutions. Hence,

one possible explanation for data in Figure 2B is that the accu-
racy of energy calculations becomes increasingly insufficient for
discrimination between the alternatives at decreasing BSA. Figure
4A illustrates the situation. In the figure, blue dots represent ABSA

and �Gint of significant crystal interfaces, and green dots show the
sum energy �Gu

int and sum BSA Au
BSA of all unspecific (interdimer)

contacts for all PDB entries in the dataset. As may be seen from the
figure, significant interfaces provide, on average, twice more bind-
ing energy per Å2 of BSA than the unspecific crystal contacts. Also,
significant interfaces may have considerably larger BSA than the
combined area of unspecific contacts. Analysis of Figures 2B and
4A suggests that crystal dimers are reproduced by docking in areas
where clusters of blue and green dots are clearly separated. Where
blue and green dots are mixed, the failure rate increases in approxi-
mate proportion to the degree of mixing. Figure 4B provides further
insight into the situation. It may be seen from the Figure that most
docking failures happen when �Gint is close to �Gu

int (the red-line

Figure 3. Comparison of docking failures from the highest-area bin
in Figure 2B (right column of structures), with the corresponding
crystal dimers identified by PISA software.22 The summary of the
corresponding docked and crystal interfaces is given in Table 1.
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Figure 4. A: The relationship between buried surface area ABSA and binding energy. Each protein pair is
represented by one blue and one green dots. Blue dots (ABSA, �Gint) correspond to “significant” crystal
interfaces. Green dots (Au

BSA, �Gu
int) correspond to sum energy and sum BSA of all other, unspecific,

crystal contacts. Solid lines represent the corresponding linear fits. The data were calculated using the
dataset of 4065 PDB entries described in Section 3. B: Distributions of successful (green line) and failed
(red line) dockings over the difference in binding energy between significant and all unspecific interfaces.
The distributions are calculated from data in (A).

distribution of �Gint − �Gu
int of failed dockings is centered almost

at 0), while for the most of successful dockings �Gint clearly pre-
vails (the green-line distribution of successful dockings is shifted
into the area of �Gint ≤ �Gu

int).
One can, again, suggest an alternative explanation of Pf (ABSA)

dependence in Figure 2B, arguing that close values of �Gint and
�Gu

int may enable substantial structural changes during crystal-
lization, particularly on the right-hand slope of the red curve
in Figure 2B, where the unspecific interactions prevail. If that
happens, then the maximum energy dimer in solution may dif-
fer from the one represented by the most significant interface in
crystal. Note that an accurate docking procedure is expected to
reproduce complexes in solution because it takes no unspecific
intercomplex interactions into account. Therefore, the difference
between crystal and natural dimers would be seen as a docking
failure.

It has been concluded in a number of studies20, 67–69 that BSA
larger than 600–850 Å2 indicates a biologically relevant interface.
A lower figure of 400 Å2 was found in ref. 9 and then used in
the Protein Quaternary Structure (PQS) server.5 The minimal BSA
of potentially stable crystal dimers in our dataset is found to be
390 Å2 (PDB entry 1SDX70), which agrees with the literature data.
However, it follows from Figures 2B and 4A and above considera-
tions that unspecific interactions may prevail at ABSA ≤ 3000 Å2,
causing substantial changes to the original complexes, and, there-
fore, dimeric structures with low ABSA may be misrepresented by
crystals.

Figure 2C shows the dependence of failure rate Pf on the free
Gibbs energy of dissociation �G0 (1). This dependence is similar
to the one in Figure 2B and may be interpreted in the same terms
as earlier. It appears, however, that this dependence is more suit-
able for quantitative interpretation thanks to the fact that free Gibbs

energy is an ultimate state function for thermodynamic systems. Two
observations in Figure 2C are important for such analysis. Firstly,
there is a nonzero chance to reproduce crystal dimer with any �G0,
and maximal Pf ≈ 0.88 < 1 is attained at �G0 ≈ 0. The near-zero
values of free energy indicate a very low reactivity of molecules,
which makes the selection of a preferable complex configuration
extremely difficult. In this situation, the fact that crystal dimers are
reproduced in about 12% of all dockings should be interpreted in
pure probabilistic terms. This implies that an average protein pair
may form about N = 8–10 different dimers, identified as principal
local minima �Gi

0 of the free Gibbs energy, and docking procedure
arrives “randomly” at one of them when calculation errors are larger
than the differences between the minima. The term “principal local
minima” here refers to the essentially different docking solutions,
as measured by the r.m.s.d. threshold. The figure of 8–10 principal
docking solutions appears to be reasonably close to the most prob-
able number of contacts per chain in crystal packings, as illustrated
by the distribution shown in Figure 5, where the distribution peak
and center are found at 7 crystal contacts per chain. Crystal con-
tacts represent geometrically optimized docking solutions and are
expected to be binding, therefore, they may correspond to principal
local minima �Gi

0. At �G0 ≈ 0, the free energy of all other crystal
dimers �Gi

0 ≈ 0 as well, which means that docking has to make
a pick from N ≈ 7 energetically close configurations. This seems
to be a plausible explanation of a limited failure rate Pf in the zero
energy end of Figure 2C.

The second interesting feature of Pf (�G0) dependence in Figure
2C is that it shows a nearly perfect, to the quality of docking data,
exponential fall (see also Fig. 6). This type of behavior suggests
an idea about its possible origin. Imagine that an average protein
pair makes N different stable dimers Di

23–28 with free Gibbs ener-
gies of dissociation (“energy states”) �Gi

0 ≥ �Gi+1
0 ≥ 0, where
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Figure 5. The distribution of the number of interfaces per protein chain
in X-ray entries of the PDB. The peak and mass center of the distribution
are found at 7 contacts per chain.

index i ∈ [0..N)] enumerates the dimers. In thermodynamically
equilibrated solutions, the occurence probability of ith dimer is

Pi
D = exp(xi)∑

j exp(xj)
, xi = �Gi

0

RT
, xi ≥ xi+1 ≥ 0 (6)

Each dimer Di represents a docking solution. An ideal docking pro-
cedure arrives at the most probable (highest-energy) dimer, i.e., D0.
Imagine next that dimer Di may crystallize as a significant crys-
tal contact subject to the occurence probability Pi

D. Then, the ideal
docking solution D0 will differ from crystal dimer with probability

Pf = 1 − P0
D =

∑
j>0 exp(xj − x0)

1 + ∑
j>0 exp(xj − x0)

(7)

which is the failure rate of docking. In the limit of �G0 = 0, eq. (7)
yields Pf (0) = (N −1)/N < 1. At high �G0, when exp(xj −x0) �
1, eq. (7) reduces to a single exponent Pf ≈ exp(x1 −x0). Assuming
that the free energy spectra {�Gi

0} scales uniformly with �G0, so
that �x = x0 − x1 ≈ αx0, obtain

Pf (x0) ≈ exp(−αx0) (8)

Fitting eq. (8) to docking results (solid line in Fig. 6) yields
α ≈ 0.053 (dashed line). Formally, approximation (8) is valid at
exp(−�x) � 1, or Pf � 1. However, Figure 6 suggests that it
agrees with docking results at considerably higher Pf ≤ 0.85. This
allows us to postulate that energy states {xi} are equidistant:

xi = x0 − i · x0/N (9)

in which case Pf becomes exponential almost everywhere. Indeed,
denote z = exp(−x0/N), then

P0
D = z−N∑N

i=1 z−i
= 1

1 + ∑N−1
i=1 zN−i

≈ 1

1 + z/(1 − z)
(10)

Pf = 1 − P0
D ≈ z = exp

(
− �G0

N · RT

)
(11)

where approximation is valid for large N . We will refer eqs. (10)
and (11) as “PDIC model” (perfect docking, imperfect crystals).
Docking data in Figure 6 are best reproduced by PDIC with N = 19
energy states, which corresponds to α ≈ 0.053 quoted above. In
the figure, dashed and center lines show Pf calculated with and
without the large-N approximation, respectively. As seen from the
figure, the assumption of thermodynamically equilibrated system of
N dimeric configurations {Di} with equidistant energy states {�Gi

0}
allows one to reproduce the exponential fall of Pf (�G0) everywhere
except very low �G0 ≤ 2 kcal/mol.

At �G0 ≈ 0, PDIC gives a higher failure rate of docking (≈0.95)
than what is observed in the docking experiment. To reproduce the
“experimental” value of Pf (0) ≈ 0.88, an average of N = 9 princi-
pal docking solutions per protein pair should be assumed in PDIC.
This, however, would lead to a significantly lower failure rate at
higher �G0, as shown by dotted line in Figure 6. This disagreement
between PDIC and docking results suggests one to include the effect
of calculation errors into consideration.

In practical docking, energy states {xi} are calculated with errors
{ξi}. Therefore, docking procedure arrives at dimer Dc with free
energy xc = maxi(xi + ξi), which does not coincide with the highest-
energy docking solution D0 if xc > x0 + ξ0. If, e.g., Dc corresponds
to Di, then Pf is calculated as in eq. (7): Pf = 1 − Pi

D. However,
in our analysis we can consider only a probability to associate Dc

with Di, treating this as a hypothesis. Besides, the value of x0 is

Figure 6. Failure rate of docking Pf fitted with PDIC (Perfect Docking,
Imperfect Crystals) model [eqs. (10) and (11)]. Solid line shows the same
data as in Figure 2C. Dashed line shows the large-N approximation in
eq. (10) and center line corresponds to the exact PDIC model, both for
N = 19 average number of principal docking solutions per pair. Dotted
line shows the exact PDIC model for N = 9, which agrees best with the
maximum Pf ≈ 0.88 reached at �G0 ≈ 0. See discussion in text.

Journal of Computational Chemistry DOI 10.1002/jcc



140 Krissinel • Vol. 31, No. 1 • Journal of Computational Chemistry

Figure 7. Probabilities �i [eq. (17)] to associate a docking solution
Dc with ith dimeric form Di, as a function of dissociation free energy
xc = �Gc

0/RT of Dc, in the units of the calculation error ε. N = 9
dimeric forms are assumed, ith line from top corresponds to �i. See
discussion in text.

not given by docking and should be treated as a hypothesis as well.
Each such hypothesis corresponds to the exponential solution (7),
and the failure rate is then calculated as sum effect of all possible
associations and x0-hypotheses:

Pf (xc) =
N−1∑
i=0

∫ ∞

0

(
1 − Pi

D(x0)
)
φi(xc, x0)

N − i

N
dx0 (12)

where (N − i)/Ndx0 stands for dxi, and φi(xc, x0) is the probabil-
ity density to associate docking solution Dc with dimer Di. Dc is
associated with Di if xi + ξi = xc and energies of all other docking
solutions xj + ξj < xc, j �= i. Let ω(ξ) be the free energy error
function. Then

φi(xc, x0) = ω(xc − xi)
∏
j �=i

∫ xc−xj

−∞
ω(ξ)dξ , xi = x0 − i · x0/N

(13)

Assuming normal error ε = �Gε
0/RT for free energy calculations,

ω(ξ) may be estimated as

ω(ξ) =
√

2 exp
(
− ξ2

2ε2

)
√

πε erfc
(
− xc√

2ε

) (14)

where denominator is chosen from the condition that free energy xi

of any principal docking solution Di is non-negative:

∫ ∞

0
ω(xc − xi)dxi = 1 (15)

Finally, substituting eq. (14) into eq. (13), obtain

φi(xc, x0) =
√

2 exp
(
− (xc−xi)

2

2ε2

)
√

πε erfcN
(
− xc√

2ε

) ∏
j �=i

(
1 + erf

(
xc − xj√

2ε

))
(16)

which may be further used in eq. (12) to calculate the failure rate
of docking. We will call eqs. (6), (12) and (16) as “IDIC model”
(imperfect docking, imperfect crystals).

It is useful for further analysis to understand the effect of calcula-
tion errors on the identification of docking solutions. Figure 7 shows
the probability �i to associate docking solution Dc with dimer Di,
calculated as follows:

�i(xc) =
∫ ∞

0
φi(xc, x0)

N − i

N
dx0 (17)

The calculations verify that
∑

i �i = 1. As seen from Figure 7,
�i > �i+1, so that Dc is most likely associated with D0. The figure
also shows that �i hardly depends on xc if xc is less than calculation
error ε. Indeed, at xc � ε, energy states {xi} at most probable
x0 ≈ xc are found well within each other’s error margins and cannot
be discriminated. Here, the difference between �i is due to the
contribution from higher x0 > xc + ε in the integral (17), which
barely depends on xc if xc � ε. On the contrary, if xc 
 ε then the
separation of energy states {xi} is larger than the calculation error ε

and �0-curve becomes dominant. In the limit of xc/ε→∞ or ε→0,
{xi} are clearly discriminated, which, effectively, means reduction
to PDIC, eqs. (10) and (11). Indeed,

lim
ε→0

φi(xc, x0) = δi,0δ(xc − x0) (18)

and then eq. (12) reduces to eq. (7), leading further to PDIC (10,11).
It is interesting to see whether docking results may be explained

only by calculation errors. In the absence of crystal misrepresenta-
tion effects, the probability to find dimer Di as a significant crystal
interface is Pi

D = δi,0. Substituting this into eq. (12), obtain

Pf (xc) =
N−1∑
i=1

∫ ∞

0
φi(xc, x0)

N − i

N
dx0 =

N−1∑
i=1

�i(xc) = 1 − �0(xc)

(19)

which we will address to as “IDPC model” (imperfect docking,
perfect crystals). IDPC is an antipode to PDIC, both being special
cases of IDIC.

Dashed line in Figure 8 shows best IDPC fit to docking results.
As seen from the figure, at N = 17 and �Gε

0 = 1.25 kcal/mol,
IDPC fit is nearly as goods as that of PDIC (shown by center line).
The root-mean square deviation:

rmsd =
√√√√ 1

Nbins

Nbins∑
i=1

(
Pf,i − Pc

f,i

)2
(20)
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Figure 8. Comparison of fits to the failure rate of docking Pf (solid
line), calculated in the framework of three different models. The solid,
center, and dotted lines are the same as in Figure 6. The center, dashed,
and long-dashed lines correspond to PDIC [eqs. (10) and (11), pure
misrepresentation effects], IDPC [eqs. (16) and (19), pure docking cal-
culation errors], and IDIC [eqs. (12) and (16), both misrepresentation
effects and calculation errors] models, respectively. Fit parameters are
summarized in Table 2. See discussion in text.

is only marginally better in IDPC (cf. Table 2). In eq. (20), Pf,i is
failure rate of docking in ith �G0 bin (cf. Fig. 2) and Pc

f,i is the
corresponding model approximation calculated in the mass center
of the bin.

At �G0 ≈ 0, IDPC shows a much closer, than PDIC, match
with docking results. However, in difference of PDIC, the success
rate of docking at low �G0 in IDPC cannot be interpreted as a
mere chance to pick the “correct” dimer from N energetically close
alternatives. Indeed, association probabilities �i in IDPC are not
equal at �G0 → 0 (cf. Fig. 7). Since �0(xc ≈ 0) > 1/N , docking
solution Dc has higher, than random, chances to be associated with
the “correct” dimer D0. According to eq. (19), this results in lower
Pf (�G0 ≈ 0) on comparison with PDIC at similar values of N ,
which is indeed seen in Figure 8.

Long dashed line in Figure 8 shows the best fit of docking results
in the framework of IDIC, which takes both calculation errors and
misrepresentation effects into account. As seen from the figure, IDIC
fit is visibly better than those given by PDIC and IDPC, which is
also confirmed by a considerably lower rmsd (20) (cf. Table 2).
Interestingly enough, IDIC and PDIC give very close values of Pf (0)

at the same number of energy states N = 9. In both models, this is a
direct consequence of indiscrimination between alternative crystal
dimers at low xc. Indeed, note that association functions φi(xc, x0 ≈
0) (16) fade at xc ≥ ε, until when the association probabilities �i(xc)

(17) stay almost constant (cf. Fig. 7). This allows one to represent
IDIC master equation (12) as

Pf (xc ≤ ε) ≈
N−1∑
i=0

(
1 − Pi

D(0)
)
�i(0) = N − 1

N
(21)

where equalities Pi
D(0) = 1/N and

∑
i �i = 1 are used.

As follows from the above analysis, the free-energy dependence
of failure rate of docking may be explained by either calculation
errors (IDPC) or crystal misrepresentation effects (PDIC), or a com-
bination of both factors (IDIC). It should be admitted that accuracy
of our Pf calculations (solid line in Fig. 8) is not quite sufficient for
unambiguous discrimination between alternative interpretations. A
considerable improvement in Pf calculations may be achieved only
by a substantial increase in the number of docked structures. This,
however, is not possible due to the limited size of the PDB. In this sit-
uation, one can choose the most plausible alternative, which seems
to be IDIC for the following reasons. Firstly, the best-fit calcula-
tion error �Gε

0 in IDIC amounts to 2.3 kcal/mol, which is higher
than that obtained in IDPC (1.25 kcal/mol) and PDIC (effectively
0). Higher values of free energy calculation error are more accept-
able here because it is unlikely to have �Gε

0 much lower than what
was estimated previously for PISA models (±5 kcal/mol22). Sec-
ondly, N = 9, obtained in IDIC (cf. Table 2), is closer to the average
number of contacts per chain in the PDB (see distribution in Fig. 5),
than N = 19 and N = 17 obtained for PDIC and IDPC, respectively.
Thirdly, IDIC gives a better quality fit to docking results as com-
pared with PDIC and IDPC, with more than twice lower r.m.s.d. (cf.
Table 2). Finally, the presence of both calculation errors and crystal
misrepresentation effects is logically justified.

Assuming that IDIC provides a more realistic interpretation of
docking results than PDIC and IDPC, one can conclude that an
average protein pair has N = 9 principal docking solutions. Then,
if docking were exact, the failure rate would be given by PDIC
with N = 9, shown by dotted line in Figure 8. This line represents
the probability that crystal and natural dimers are different, i.e., the
pure misrepresentation effect. The figure suggests that the effect is
limited to weakly bound complexes. For example, some 12% of
crystal dimers with �G0 ≈ 10 kcal/mol seem to misrepresent their
natural forms, while for crystal dimers with �G0 ≈ 20 kcal/mol
these expectations are as low as 1%. It is worth noting that many
crystal dimers in the PDB appear to be weakly bound. The fraction
of misrepresented dimers in a dataset of M protein pairs may be
estimated as

Fc = 1

M

M∑
i=1

Pf
(
�G(i)

0

)
(22)

where �G(i)
0 is the dissociation free energy of ith dimer, and Pf is

calculated as in PDIC [eqs. (10) and (11)]. For the dataset used in
present study, Fc = 0.19, which means that 19% of nonredundant
dimers in the PDB may be misrepresented by crystal packing.

Table 2. Summary of Best Fits to the Failure Rate of Docking,
Presented in Figure 8.

Model N �Gε
0 rmsd

PDIC 19 N/A 0.049
IDPC 17 1.25 0.046
IDIC 9 2.3 0.019

N stands for the average number of principal docking solutions, �Gε
0 is the

normal error of free energy calculations, in kcal/mol, and rmsd measures the
difference between the observed and model failure rates, see eq. (20).
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Weak protein–protein complexes, which may readily dissociate
or associate depending on precise physiological condition or envi-
ronment, play an important role in many biological processes, such
as signal transduction,71 electron transport,72–74 transcriptional reg-
ulation,75, 76 growth factors,77–80 molecular switches,81–83 cell–cell
recognition,84 and many others.85–99 The dissociation constant KD of
weak complexes may reach a few hundred µM,90 which corresponds
to �G0 of only a few kcal/mol. Experimental identification of struc-
tural features of such complexes is difficult because of their transient
nature (see, e.g., refs. 92, 93, 96 and 99). In a number of studies, it
was found that weak PPIs manifest themselves in highly condensed,
precrystal, solutions and crystalline state, which implies that protein
crystallography may be used for studying weak associations (see
refs. 74, 79, 80, 90, 94–96 and 98). However, the overall probability
of seeing a weak biological interaction as a crystal interface remains
unclear. Our results provide an estimate of such probability, which
suggests that capturing transient PPIs in crystals may be less likely
than anticipated. Therefore, weak complexes, obtained from crystal-
lographic data, should be always verified by complementing studies.

Conclusion

Broadly speaking, both crystals and docking programs give us mod-
els of protein complexes, and it appears that they both have limits
to the accuracy of models they provide. In this study, we attempted
to estimate these limits by comparing protein dimers identified in
crystal packing with the results of computational docking. In our
analysis, we assumed the existence of alternative dimeric structures
with equidistant energy spectra for each protein pair, and hypoth-
esized a reflection of their thermodynamic equilibrium in crystal
packings. These assumptions were necessary for deriving a theo-
retical model for the failure rate of docking and the likelihood of
misrepresentation of protein dimers in crystals. Therefore, quanti-
tative aspects of our results may have a limited value, however, the
model is useful for general understanding and qualitative analysis.

The underlying reasons for misrepresentation effects in crystals
and docking errors are quite similar. In crystals, misrepresentation
may happen if energy gap between alternative complex configura-
tions is too narrow on comparison with the binding power of crystal
contacts. Docking is likely to fail when energy gap between princi-
pal docking solutions compares with free energy calculation error.
We have shown that crystals and docking agree very well on strongly
bound complexes, where alternative configurations are well sepa-
rated on energy scale. However, in case of weak complexes, crystal
and docked dimers may differ in up to ≈90% of instances, and free
energy trend of this disagreement is best explained if imperfectness
of both crystals and docking calculations is assumed.

It is widely accepted that crystals give a much better idea about
complex structure than does the computational docking, and our
results confirm this in general. As appears, docking errors and mis-
representation effects have very similar rate at �G0 ≈ 0, however,
the latter fade with increasing �G0 much faster than the former.

As found, weak complexes may be significantly misrepresented
by crystal packing. Transient complexes with KD > 100 µM
(�G0 ≤ 5 kcal/mol) are estimated to have only 10–15% chances
to retain their structure in crystalline state. Reliable (1–2% errors)
representation of complexes in crystals is expected at �G0 > 15–20

kcal/mol. The misrepresentation effects disappear only at �G0 >

35–40 kcal/mol, when, in good agreement with physical considera-
tions, binding forces become nearly as strong as covalent linking. In
computational docking, the free energy benchmarks are higher. For
the docking program used, no errors were recorded at �G0 ≥ 50
kcal/mol, relatively reliable results are obtainable at �G0 ≥ 40
kcal/mol, and the program is expected to produce more errors than
correct answers if �G0 ≤ 10 kcal/mol.

Different datasets of macromolecular complexes are used in the
literature to calibrate or test computational procedures related to the
prediction of macromolecular interactions and complexes, docking,
active site recognition, and so on. Our results emphasize that inde-
pendent, noncrystallographic, evidence for weak 3D interactions
should be secured prior including them into the dataset.

Finally, our theoretical framework may be applicable in other
studies, where experimental results may be viewed as snapshots of
thermodynamically equilibrated systems. An obvious field of appli-
cation includes comparative analysis of protein folds obtained from
protein crystallography, NMR studies, and computational modeling
(CASP competition100). A major advantage of our approach to such
sort of analysis is that it estimates the quality of the dataset and
indicates the principally achievable rate of success. Therefore, we
believe that the method presented is more rigorous and conceptu-
ally correct than simple estimates of success used traditionally. The
method requires a sizable dataset to achieve a reasonable accuracy in
the failure rate calculations (4065 protein pairs were used in present
study), but the outcome is worth the computational cost.
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